Use the Back button in your browser to see the other results of your search or to select another record.

Detailed Search Results

Effect of EMG-biofeedback robotic-assisted body weight supported treadmill training on walking ability and cardiopulmonary function on people with subacute spinal cord injuries -- a randomized controlled trial
Cheung EYY, Yu KKK, Kwan RLC, Ng CKM, Chau RMW, Cheing GLY
BMC Neurology 2019 Jun 24;19(140):Epub
clinical trial
8/10 [Eligibility criteria: No; Random allocation: Yes; Concealed allocation: Yes; Baseline comparability: Yes; Blind subjects: No; Blind therapists: No; Blind assessors: Yes; Adequate follow-up: Yes; Intention-to-treat analysis: Yes; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed*

BACKGROUND: Body weight supported treadmill training (BWSTT) is a frequently used approach for restoring the ability to walk after spinal cord injury (SCI). However, the duration of BWSTT is usually limited by fatigue of the therapists and patients. Robotic-assisted body weight supported treadmill training (RABWSTT) was developed to tackle the aforesaid limitation. Currently, limited randomized controlled trials are available to investigate its effectiveness, especially on cardiopulmonary function. The aim of this two-arm, parallel-group randomized controlled trial is to examine the feasibility of adapting an EMG-biofeedback system for assist-as-needed RABWSTT and its effects on walking and cardiopulmonary function in people with SCI. METHODS: Sixteen incomplete SCI subjects were recruited and randomly allocated into an intervention group or control group. The intervention group received 30 min of RABWSTT with EMG biofeedback system over the vastus lateralis muscle to enhance active participation. Dose equivalent passive lower limbs mobilization exercise was provided to subjects in the control group. RESULTS: Significant time-group interaction was found in the Walking Index for Spinal Cord Injury version II (WISCI II) (p = 0.020), Spinal Cord Independence Measure version III (SCIM III) mobility sub-score (p < 0.001), bilateral symmetry (p = 0.048), maximal oxygen consumption (p = 0.014) and peak expiratory flow rate (p = 0.048). Wilcoxon signed-rank test showed that the intervention group had significant improvement in the above-mentioned outcomes after the intervention except WISCI II, which also yielded marginal significance level. CONCLUSION: The present study demonstrated that the use of EMG-biofeedback RABWSTT enhanced the walking performance for SCI subjects and improve cardiopulmonary function. Positive outcomes reflect that RABSTT training may be able to enhance their physical fitness.

Full text (sometimes free) may be available at these link(s):      help