Use the Back button in your browser to see the other results of your search or to select another record.

Detailed Search Results

The acute and long-term effects of a cardiac rehabilitation program on endothelial progenitor cells in chronic heart failure patients: comparing two different exercise training protocols
Kourek C, Alshamari M, Mitsiou G, Psarra K, Delis D, Linardatou V, Pittaras T, Ntalianis A, Papadopoulos C, Panagopoulou N, Vasileiadis I, Nanas S, Karatzanos E
International Journal of Cardiology Heart & Vasculature 2021 Feb;32:100702
clinical trial
4/10 [Eligibility criteria: Yes; Random allocation: Yes; Concealed allocation: No; Baseline comparability: Yes; Blind subjects: No; Blind therapists: No; Blind assessors: No; Adequate follow-up: No; Intention-to-treat analysis: No; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed*

BACKGROUND: Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Endothelial progenitor cells (EPCs) are also impaired. The purpose of the study was to assess the effect of a cardiac rehabilitation (CR) program on the increase of EPCs at rest and on the acute response after maximal exercise in patients with CHF and investigate whether there were differences between two exercise training protocols and patients of NYHA II and III classes. METHOD(S): Forty-four patients with stable CHF enrolled in a 36-session CR program and were randomized in one training protocol; either high-intensity interval training (HIIT) or HIIT combined with muscle strength (COM). All patients underwent maximum cardiopulmonary exercise testing (CPET) before and after the CR program and venous blood was drawn before and after each CPET. Five endothelial cellular populations, expressed as cells/106 enucleated cells, were quantified by flow cytometry. RESULT(S): An increase in all endothelial cellular populations at rest was observed after the CR program (p < 0.01). The acute response after maximum exercise increased in 4 out of 5 endothelial cellular populations after rehabilitation. Although there was increase in EPCs at rest and the acute response after rehabilitation in each exercise training group and each NYHA class, there were no differences between HIIT and COM groups or NYHA II and NYHA III classes (p > 0.05). CONCLUSION(S): A 36-session CR program increases the acute response after maximum CPET and stimulates the long-term mobilization of EPCs at rest in patients with CHF. These benefits seem to be similar between HIIT and COM exercise training protocols and between patients of different functional classes.

Full text (sometimes free) may be available at these link(s):      help