Use the Back button in your browser to see the other results of your search or to select another record.

Detailed Search Results

Effect of commercial wearables and digital behaviour change resources on the physical activity of adolescents attending schools in socio-economically disadvantaged areas: the RAW-PA cluster-randomised controlled trial
Ridgers ND, Timperio A, Ball K, Lai SK, Brown H, Macfarlane S, Salmon J
The International Journal of Behavioral Nutrition and Physical Activity 2021 Apr 12;18(52):Epub
clinical trial
6/10 [Eligibility criteria: Yes; Random allocation: Yes; Concealed allocation: No; Baseline comparability: Yes; Blind subjects: No; Blind therapists: No; Blind assessors: No; Adequate follow-up: Yes; Intention-to-treat analysis: Yes; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed*

BACKGROUND: There has been increasing interest in using wearable activity trackers to promote physical activity in youth. This study examined the short- and longer-term effects of a wearable activity tracker combined with digital behaviour change resources on the physical activity of adolescents attending schools in socio-economically disadvantaged areas. METHODS: The Raising Awareness of Physical Activity (RAW-PA) study was a 12-week, multicomponent intervention that combined a Fitbit Flex (and accompanying app), and online digital behaviour change resources and weekly challenges delivered via Facebook. RAW-PA was evaluated using a cluster-randomised controlled trial with 275 adolescents (50.2% female; 13.7 +/- 0.4 years) from 18 Melbourne secondary schools (intervention n = 9; wait-list control group n = 9). The primary outcome was moderate- to vigorous-intensity physical activity (MVPA), measured using hip-worn ActiGraph accelerometers. The secondary outcome was self-reported physical activity. Data were collected at baseline, 12-weeks (immediately post-intervention), and 6-months post-intervention (follow-up). Multilevel models were used to determine the effects of the intervention on daily MVPA over time, adjusting for covariates. RESULTS: No significant differences were observed between intervention and wait-list control adolescents' device-assessed MVPA immediately post-intervention. At 6-months post-intervention, adolescents in the intervention group engaged in 5 min (95% CI -9.1 to -1.0) less MVPA per day than those in the wait-list control group. Males in the intervention group engaged in 11 min (95% CI -17.6 to -4.5) less MVPA than males in the wait-list control group at 6-months post-intervention. No significant differences were observed for females at either time point. For self-reported physical activity, no significant effects were found at 12-weeks and 6-months post-intervention. CONCLUSIONS: Combining a wearable activity tracker with digital behaviour change resources and weekly challenges did not increase inactive adolescents' accelerometer-derived and self-reported physical activity levels immediately post-intervention. This contrasts previous research that has suggested wearable activity tracker may increase youth physical activity levels in the short-term. Lower engagement in MVPA 6-months post-intervention was observed for males but not for females, though it is unclear why this finding was observed. The results suggest wearable activity trackers, in combination with supporting materials, may not be effective for increasing physical activity levels in adolescents. TRIAL REGISTRATION: ACTRN12616000899448. Australian and New Zealand Clinical Trials Registry. Registered 7 July 2016.

Full text (sometimes free) may be available at these link(s):      help