Use the Back button in your browser to see the other results of your search or to select another record.

Detailed Search Results

The effects of neuromuscular electrical stimulation to the ankle pronators on neural excitability and functional status in patients with chronic ankle instability [with consumer summary]
Needle AR, Tinsley JE, Cash JJ, Koeval BK, Barton JA, Howard JS
Physical Therapy in Sport 2023 Mar;60:1-8
clinical trial
7/10 [Eligibility criteria: Yes; Random allocation: Yes; Concealed allocation: No; Baseline comparability: Yes; Blind subjects: Yes; Blind therapists: No; Blind assessors: No; Adequate follow-up: Yes; Intention-to-treat analysis: Yes; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed*

OBJECTIVES: Chronic ankle instability (CAI) is associated with decreased neural excitability that negatively impacts function. This study assessed a 2-week neuromuscular electrical stimulation (NMES) or transcutaneous electrical nerve stimulation (TENS) intervention over the ankle pronators on neural excitability, performance, and patient-reported function in patients with CAI. STUDY DESIGN: Randomized controlled trial. PARTICIPANTS: Twenty participants with CAI completed the study. MAIN OUTCOME MEASURES: Participants were assessed for reflexive and corticospinal excitability to the ankle muscles, dynamic balance, side-hop test performance and patient-reported outcomes at baseline, post-intervention (2-weeks), and retention (4-weeks). Between baseline and post-intervention, participants reported for 5 sessions where they received either sub-noxious NMES (n = 11) or sensory-level TENS (n = 9) over the ankle pronators. RESULTS: Improved reflexive excitability to the ankle pronators was observed in TENS at post-intervention (p = 0.030) and retention (p = 0.029). Cortical excitability to the dorsiflexors increased in TENS at post-intervention (p = 0.017), but not at retention (p = 0.511). No significant changes were found for other neural measures, balance ability, hopping, or patient-reported function (p > 0.050). CONCLUSIONS: Our results suggest TENS modified neural excitability; however, these changes were not enough to impact clinical function. While TENS may be capable of neuromodulation, it may require rehabilitative exercise to generate lasting changes. NCT04322409.

Full text (sometimes free) may be available at these link(s):      help