Use the Back button in your browser to see the other results of your search or to select another record.
| Differences in the acute effects of aerobic and resistance exercise in subjects with type 2 diabetes: results from the RAED2 randomized trial |
| Bacchi E, Negri C, Trombetta M, Zanolin ME, Lanza M, Bonora E, Moghetti P |
| PLoS ONE 2012 Dec;7(12):e49937 |
| clinical trial |
| 4/10 [Eligibility criteria: No; Random allocation: Yes; Concealed allocation: No; Baseline comparability: Yes; Blind subjects: No; Blind therapists: No; Blind assessors: No; Adequate follow-up: No; Intention-to-treat analysis: No; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed* |
|
OBJECTIVE: Both aerobic (AER) and resistance (RES) training, if maintained over a period of several months, reduce HbA1c levels in type 2 diabetes subjects. However, it is still unknown whether the short-term effects of these types of exercise on blood glucose are similar. Our objective was to assess whether there may be a difference in acute blood glucose changes after a single bout of AER or RES exercise. STUDY DESIGN: Twenty-five patients participating in the RAED2 study, a RCT comparing AER and RES training in diabetic subjects, were submitted to continuous glucose monitoring during a 60-min exercise session and over the following 47 h. These measurements were performed after 10.9+0.4 weeks of training. Glucose concentration areas under the curve (AUC) during exercise, the subsequent night, and the 24-h period following exercise, as well as the corresponding periods of the non-exercise day, were assessed. Moreover, the low (LBGI) and high (HBGI) blood glucose indices, which summarize the duration and extent of hypoglycaemia or hyperglycaemia, respectively, were measured. RESULTS: AER and RES training similarly reduced HbA1c. Forty-eight hour glucose AUC was similar in both groups. However, a comparison of glucose AUC during the 60-min exercise period and the corresponding period of the non-exercise day showed that glucose levels were lower during exercise in the AER but not in the RES group (time-by-group interaction p = 0.04). Similar differences were observed in the nocturnal periods (time-by-group interaction p = 0.02). Accordingly, nocturnal LBGI was higher in the exercise day than in the non-exercise day in the AER (p = 0.012) but not in the RES group (p = 0.62). CONCLUSIONS: Although AER and RES training have similar long-term metabolic effects in diabetic subjects, the acute effects of single bouts of these exercise types differ, with a potential increase in late-onset hypoglycaemia risk after AER exercise. TRIAL REGISTRATION: ClinicalTrials.gov NCT01182948.
|