Use the Back button in your browser to see the other results of your search or to select another record.

Detailed Search Results

Effects of strength and power training on neuromuscular variables in older adults
Wallerstein LF, Tricoli V, Barroso R, Rodacki ALF, Russo L, Aihara AY, da Rocha Correa Fernandes A, de Mello MT, Ugrinowitsch C
Journal of Aging and Physical Activity 2012 Apr;20(2):171-185
clinical trial
4/10 [Eligibility criteria: Yes; Random allocation: Yes; Concealed allocation: No; Baseline comparability: Yes; Blind subjects: No; Blind therapists: No; Blind assessors: No; Adequate follow-up: No; Intention-to-treat analysis: No; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed*

The purpose of this study was to compare the neuromuscular adaptations produced by strength-training (ST) and power-training (PT) regimens in older individuals. Participants were balanced by quadriceps cross-sectional area (CSA) and leg-press 1-repetition maximum and randomly assigned to an ST group (n = 14; 63.6 +/- 4.0 yr, 79.7 +/- 17.2 kg, and 163.9 +/- 9.8 cm), a PT group (n = 16; 64.9 +/- 3.9 yr, 63.9 +/- 11.9 kg, and 157.4 +/- 7.7 cm), or a control group (n = 13; 63.0 +/- 4.0 yr, 67.2 +/- 10.8 kg, and 159.8 +/- 6.8 cm). ST and PT were equally effective in increasing (a) maximum dynamic and isometric strength (p < 0.05), (b) increasing quadriceps muscle CSA (p < 0.05), and (c) decreasing electrical mechanical delay of the vastus lateralis muscle (p < 0.05). There were no significant changes in neuromuscular activation after training. The novel finding of the current study is that PT seems to be an attractive alternative to regular ST to maintain and improve muscle mass.

Full text (sometimes free) may be available at these link(s):      help