Use the Back button in your browser to see the other results of your search or to select another record.
Exercise augmentation of exposure therapy for PTSD: rationale and pilot efficacy data |
Powers MB, Medina JL, Burns S, Kauffman BY, Monfils M, Asmundson GJG, Diamond A, McIntyre C, Smits JAJ |
Cognitive Behaviour Therapy 2015 Jun;44(4):314-327 |
clinical trial |
5/10 [Eligibility criteria: Yes; Random allocation: Yes; Concealed allocation: No; Baseline comparability: Yes; Blind subjects: No; Blind therapists: No; Blind assessors: Yes; Adequate follow-up: No; Intention-to-treat analysis: No; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed* |
Brain-derived neurotrophic factor (BDNF) is associated with synaptic plasticity, which is crucial for long-term learning and memory. Some studies suggest that people suffering from anxiety disorders show reduced BDNF relative to healthy controls. Lower BDNF is associated with impaired learning, cognitive deficits, and poor exposure-based treatment outcomes. A series of studies with rats showed that exercise elevates BDNF and enhances fear extinction. However, this strategy has not been tested in humans. In this pilot study, we randomized participants (n = 9, 8 females, mean age 34) with posttraumatic stress disorder (PTSD) to (a) prolonged exposure alone (PE) or (b) prolonged exposure+exercise (PE+E). Participants randomized to the PE+E condition completed a 30-minute bout of moderate-intensity treadmill exercise (70% of age-predicted HRmax) prior to each PE session. Consistent with prediction, the PE+E group showed a greater improvement in PTSD symptoms (d = 2.65) and elevated BDNF (d = 1.08) relative to the PE only condition. This pilot study provides initial support for further investigation into exercise augmented exposure therapy.
|