Use the Back button in your browser to see the other results of your search or to select another record.

Detailed Search Results

Advantages of using 3D virtual reality based training in persons with Parkinson's disease: a parallel study
Cikajlo I, Peterlin Potisk K
Journal of NeuroEngineering & Rehabilitation 2019 Oct 17;16(119):Epub
clinical trial
4/10 [Eligibility criteria: Yes; Random allocation: Yes; Concealed allocation: No; Baseline comparability: No; Blind subjects: No; Blind therapists: No; Blind assessors: No; Adequate follow-up: Yes; Intention-to-treat analysis: No; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed*

BACKGROUND: Parkinson's disease (PD) is a slowly progressive neurodegenerative disease. There are mixed reports on success of physiotherapy in patients with PD. Our objective was to investigate the functional improvements, motivation aspects and clinical effectiveness when using immersive 3D virtual reality versus non-immersive 2D exergaming. METHODS: We designed a randomized parallel study with 97 patients, but only 20 eligible participants were randomized in 2 groups; the one using 3D Oculus Rift CV1 and the other using a laptop. Both groups participated in the 10-session 3 weeks training with a pick and place task in the virtual world requiring precise hand movement to manipulate the virtual cubes. The kinematics of the hand was traced with Leap motion controller, motivation effect was assessed with modified Intrinsic Motivation Inventory and clinical effectiveness was evaluated with Box and Blocks Test (BBT) and shortened Unified Parkinson's disease rating scale (UPDRS) before and after the training. Mack-Skilling non-parametrical statistical test was used to identify statistically significant differences (p < 0.05) and Cohen's U3 test to find the effect sizes. RESULTS: Participants in the 3D group demonstrated statistically significant and substantially better performance in average time of manipulation (group x time, p = 0.009), number of successfully placed cubes (group x time, p = 0.028), average tremor (group x time, p = 0.002) and UPDRS for upper limb (U3 = 0.35). The LCD and 3D groups substantially improved their BBT score with training (U3 = 0.7, U3 = 0.6, respectively). However, there were no statistically significant differences in clinical tests between the groups (group x time, p = 0.2189, p = 0.2850, respectively). In addition the LCD group significantly decreased the pressure/tension (U3 = 0.3), the 3D did not show changes (U3 = 0.5) and the differences between the groups were statistically different (p = 0.037). The 3D group demonstrated important increase in effort (U3 = 0.75) and perceived competences (U3 = 0.9). CONCLUSIONS: The outcomes of the study demonstrated that the immersive 3D technology may bring increased interests/enjoyment score resulting in faster and more efficient functional performance. But the 2D technology demonstrated lower pressure/tension score providing similar clinical progress. A study with much larger sample size may also confirm the clinical effectiveness of the approaches. TRIAL REGISTRATION: The small scale randomized pilot study has been registered at ClinicalTrials.gov identifier NCT03515746, 4 May 2018.

Full text (sometimes free) may be available at these link(s):      help