Use the Back button in your browser to see the other results of your search or to select another record.
Effects of peroneus brevis versus peroneus longus muscle training on muscle function in chronic ankle instability: a randomized controlled trial |
Ko D, Choi Y, Lee K |
Healthcare 2024 Feb;12(5):547 |
clinical trial |
6/10 [Eligibility criteria: Yes; Random allocation: Yes; Concealed allocation: No; Baseline comparability: Yes; Blind subjects: No; Blind therapists: No; Blind assessors: Yes; Adequate follow-up: Yes; Intention-to-treat analysis: No; Between-group comparisons: Yes; Point estimates and variability: Yes. Note: Eligibility criteria item does not contribute to total score] *This score has been confirmed* |
Chronic ankle instability (CAI) is a common injury that can occur in daily life or sporting events. Injuries to the anterior talofibular, posterior talofibular, and calcaneofibular ligaments are common, and the core of rehabilitation training involves strengthening the peroneus muscle. Many studies on rehabilitation training have focused on strengthening the peroneus brevis muscle, and few studies have focused on specific training to strengthen the peroneus longus muscle. Therefore, this study aims to investigate changes in the symptoms and functions of patients by applying training to strengthen the peroneus longus and peroneus brevis muscles. Home-based training and mobile monitoring were utilized for 12 weeks, divided into peroneus brevis training (PBT) and peroneus longus training (PLT), in 52 adult males with CAI. Participation was voluntary, with enrollment done through a bulletin board, and intervention training allocation was randomly assigned and conducted in a double-blind manner. This study was registered as a trial protocol (KCT 0008478). Foot and ankle outcome scores (FAOS), isokinetic ankle strength tests, and Y-balance tests were performed before and after the intervention. Both PLT and PBT significantly improved in FAOS, inversion, and eversion at angular velocities of 30 degree/s and 120 degree/s and in the anterior and posterolateral directions of the Y-balance test (p < 0.05). Interaction effects by time and group were not significant for the FAOS (p > 0.05). However, PLT improved eversion muscle strength and muscle power to a greater degree, compared with PBT, in the anterior and posterolateral directions of the Y-balance test (p < 0.05). In conclusion, both PLT and PBT were effective for CAI patients; in addition, PLT had greater potential for improving strength and balance.
|